Learn You a VWWhat for
Great Good!

Sean Corfield
World Singles llc

Polyglot Lessons to
Improve Your CFML!

Sean Corfield
World Singles llc

Agenda

ldioms in other languages
Applying those in CFML
Collection classes

Arrays & Structs
Closures

Integrating other languages

You Might Prefer...

Practical Deployment with Git and Ant
Rich Apps with Angular)S

Automating PhoneGap Build
Writing Secure CFML

Me

Functional Programming in the 80's
Object-Oriented Programming in the 90's
Web / Dynamic Programming in the 00's
Mostly Clojure today

Me & Polyglot

| love learning new programming languages!
Learned a dozen languages at university
Probably learned another dozen since

Production apps in a dozen languages

Agenda

® Idioms in other languages
® Applying those in CFML

® Collection classes

® Arrays & Structs

® Closures

® |ntegrating other languages

JavaScript

® |t's ubiquitous - see js.Objective()
® "OQO" Prototype-based

® Heavy use of callbacks & closures

Prototypes

var Person = function(first, last){
this.first = first;
this.last = last;
J;
Person.prototype.greeting =
function(salutation){
return salutation + " " + this.first + "!";

5

Prototypes (cont)

var me = new Person("Sean”, "Corfield");

me.greeting("Hi"); // Hi Sean!

Person.prototype.fullname = function(){
return this.first + " " + this.last;

5

me.fullname(); // Sean Corfield

Changes affect all live instances!

Callbacks

Callbacks are a way for a process to initiate
additional operations after it completes

A process is passed a function that is calls
when it has finished doing its job

Most non-trivial JavaScript uses callbacks

jQuery Ajax calls are asynch then the
callback is invoked to handle the results

11

Closures

® A closure is a function expression that
"closes over" part of its definition
environment

o WAT?

12

Closures

® A function expression that uses variables
that were in scope when it was defined

® Just show me an example!

13

Closures

var greeting = function(salutation){
return function(name){
return salutation + " "
};
};
var greet = greeting("Hello");
greet("Sean"); // Hello Sean!

+ name +

JavaScript and CFML

® Prototypes have no CFML equivalent
® Can modify CFC metadata
® singleton, per-class data / functions
® doesn't affect existing instances

® |imited effect on new instances

JavaScript and CFML

® Can imitate with onMissingMethod

® and a public prototype member

e DEMO!

JavaScript and CFML

® (Callbacks have been possible for ages

® CFML allows functions to be passed as args

JavaScript and CFML

® We don't do much async stuff in CFML tho'
® HT TP requests require synch results
® so we tend to join threads

® Otherwise we just "fire'n'forget” threads

JavaScript and CFML

® As of ColdFusion 10/ Railo 4: closures!

e DEMO!

Groovy

® Designed to be a "better Java"
® | ow ceremony

® Dynamic typing

Code Blocks

® {n->n*n}
{it™it}
[1,2, 3,4].collect { it * it }
[1,2,3,4].findAll {it>2}
[1,2,3,4].each { printIn it }

Code Blocks

® {n->n*nj
{it™it}
1,2,3,4].collect {it*it}//[1,4,9,16]
1,2,3,4]findAll {it>2}//[3,4]
|, 2, 3,4].each { println it }

Dynamic lyping

® String i = 42;
Integer j = "42";
/I errors at RUNTIME, not compile time

Dynamic lyping

® defi=42;
def j = "42";
/] types are optional anyway; this is valid

Dynamic lyping

® Optional static typing is available in Groovy
from 2.0 onwards...

Groovy and CFML

® function(n) {returnn*n;}//{n->n*n}
function(it) { return it *it; } // { it * it }

® collect/ findAll - we'll cover later

® Optional / dynamic typing is familiar, yes!?

Clojure

Lisp on the JVM
Based on a number of abstractions
General purpose replacement for Java

Immutable data by default

Sequence Abstraction

® first, rest, cons
® may be countable (knows own length)
® map, filter, reduce

® Groovy's collect, findAll - sort of

Sequence Abstraction

o (first [l 2 3 4])
(rest [2 3 4])
(cons 5 [6 7 8])
(map inc [| 2 3 4])
(filter even? [| 2 3 4])
(reduce + [| 2 3 4])

Sequence Abstraction

o (first[l 234]);; |
(rest [| 2 3 4]);;(2 3 4) - not a vector
(cons 5[678]);;(5678)-not avector
(map inc [23 4]);;(2 3 4)5)
(filter even!? [| 2 3 4]) ;; (2 4)
(reduce + [| 23 4]);; 10

Lazy Sequences

® Can model infinite sequences
® Sequence realized on-demand

® Can wrap discrete processes to produce
continuous processes-as-sequences

Lazy Sequence

® (iterateinc0);;(01234567891011I..
(take 5 (iterate inc 0))
(take 5 (drop 5 (iterate (fn [n] (* 2 n)) I)))

(take 5 (map inc (filter odd? (iterate inc 0))))

Lazy Sequence

® (iterateinc0);;(01234567891011I..
(take 5 (iterate inc 0)) ;; (0 | 2 3 4)
(take 5 (drop 5 (iterate (fn [n] (* 2 n)) I)))
(32 64 128 256 512)
(take 5 (map inc (filter odd? (iterate inc 0))))
(2468 10)

Clojure and CFML

® No immutable data
® can implement immutable objects
® sort of - can often circumvent :(
® No sequence abstraction

® just loops :(

Clojure and CFML

® Can imitate lazy sequences!
® as a function that returns a pair

® of the next value and a function for the
rest of the lazy sequence

e DEMO!

Scala

® Designed to be a "better Java"
® | ow ceremony

® Strong, static typing

OOP / FP Hybrid

Full object-oriented language

Classes + objects + case (value) objects
Immutable data possible

Sophisticated collection classes

head, tail, + (cons), size

map, filter, reduce, etc

Strong Typing w/
Inference

® Mostly can omit types (like dynamic langs)
® Still type-safe operations
® Also type-safe collections

® List of integer can contain only integers

Scala and CFML

® Not much in common

® No strong typing, no immutable data, no
real collection classes...

® Useful to "Think in FP vs OOP"

Agenda

® |dioms in other languages
® Applying those in CFML
® Collection classes

® Arrays & Structs

® Closures

® |ntegrating other languages

Collection Classes

® |ists, vectors, maps (structs), queues,
stacks, sets, bags, ...

® Standard API (like Clojure)

® Standard functions to operate on them

Agenda

® |dioms in other languages
® Applying those in CFML
® Collection classes

® Arrays & Structs

® Closures

® |ntegrating other languages

Arrays & Structs

® Array can be treated as list or vector
® Struct is a map and can model a set
® ColdFusion 10 & Railo 4 introduced
® arrayEach, arrayFilter, etc
® structEach, structFilter, etc

® no map or reduce functions :(

Agenda

® |dioms in other languages
® Applying those in CFML
® Collection classes

® Arrays & Structs

® Closures

® |ntegrating other languages

Closures

ColdFusion 10 & Railo 4 introduced these
Makes it easier to write map, reduce, etc

Finally allows us to treat arrays and structs
more like collection classes (in other langs)

DEMO!

45

Agenda

® |dioms in other languages
® Applying those in CFML
® Collection classes

® Arrays & Structs

® Closures

® Integrating other languages

Integrating Other
Languages

® Class path & libraries

® Javal.oader helps but does not solve all
problems, same for loadPaths (CF10)

® Compiling & JAR files

Integrating Other
Languages

® (Calling into other languages
® Data structure interop
® Some commonality in Java types

® Calling back into CFML

® createDynamicProxy (CFI10) can help

Summary

® | earn a new language every year!

® Better CFML through other languages

® Arrays and structs are very powerful (now)
® use them as general collection types

® closures make them much more powerful

49

Q &A!

® (@seancorfield

® http://corfield.org

® sean(@corfield.org

http://corfield.org
http://corfield.org
mailto:sean@corfield.org
mailto:sean@corfield.org

