
Learn You a What for
Great Good?

Sean Corfield
World Singles llc

1

Polyglot Lessons to
Improve Your CFML!

Sean Corfield
World Singles llc

2

Agenda

• Idioms in other languages

• Applying those in CFML

• Collection classes

• Arrays & Structs

• Closures

• Integrating other languages

3

You Might Prefer...

• Practical Deployment with Git and Ant

• Rich Apps with AngularJS

• Automating PhoneGap Build

• Writing Secure CFML

4

Me

• Functional Programming in the 80's

• Object-Oriented Programming in the 90's

• Web / Dynamic Programming in the 00's

• Mostly Clojure today

5

Me & Polyglot

• I love learning new programming languages!

• Learned a dozen languages at university

• Probably learned another dozen since

• Production apps in a dozen languages

6

Agenda

• Idioms in other languages

• Applying those in CFML

• Collection classes

• Arrays & Structs

• Closures

• Integrating other languages

7

JavaScript

• It's ubiquitous - see js.Objective()

• "OO" Prototype-based

• Heavy use of callbacks & closures

8

Prototypes

• var Person = function(first, last){
 this.first = first;
 this.last = last;
};
Person.prototype.greeting =
function(salutation){
 return salutation + " " + this.first + "!";
};

9

Prototypes (cont)

• var me = new Person("Sean", "Corfield");
me.greeting("Hi"); // Hi Sean!
Person.prototype.fullname = function(){
 return this.first + " " + this.last;
};
me.fullname(); // Sean Corfield

• Changes affect all live instances!

10

Callbacks

• Callbacks are a way for a process to initiate
additional operations after it completes

• A process is passed a function that is calls
when it has finished doing its job

• Most non-trivial JavaScript uses callbacks

• jQuery Ajax calls are asynch then the
callback is invoked to handle the results

11

Closures

• A closure is a function expression that
"closes over" part of its definition
environment

• WAT?

12

Closures

• A function expression that uses variables
that were in scope when it was defined

• Just show me an example!

13

Closures

• var greeting = function(salutation){
 return function(name){
 return salutation + " " + name + "!";
 };
};
var greet = greeting("Hello");
greet("Sean"); // Hello Sean!

14

JavaScript and CFML

• Prototypes have no CFML equivalent

• Can modify CFC metadata

• singleton, per-class data / functions

• doesn't affect existing instances

• limited effect on new instances

15

JavaScript and CFML

• Can imitate with onMissingMethod

• and a public prototype member

• DEMO!

16

JavaScript and CFML

• Callbacks have been possible for ages

• CFML allows functions to be passed as args

17

JavaScript and CFML

• We don't do much async stuff in CFML tho'

• HTTP requests require synch results

• so we tend to join threads

• Otherwise we just "fire'n'forget" threads

18

JavaScript and CFML

• As of ColdFusion 10 / Railo 4: closures!

• DEMO!

19

Groovy

• Designed to be a "better Java"

• Low ceremony

• Dynamic typing

20

Code Blocks

• { n -> n * n}
{ it * it }
[1, 2, 3, 4].collect { it * it }
[1, 2, 3, 4].findAll { it > 2 }
[1, 2, 3, 4].each { println it }

21

Code Blocks

• { n -> n * n}
{ it * it }
[1, 2, 3, 4].collect { it * it } // [1, 4, 9, 16]
[1, 2, 3, 4].findAll { it > 2 } // [3, 4]
[1, 2, 3, 4].each { println it }
1
2
3
4

22

Dynamic Typing

• String i = 42;
Integer j = "42";
// errors at RUNTIME, not compile time

23

Dynamic Typing

• def i = 42;
def j = "42";
// types are optional anyway; this is valid

24

Dynamic Typing

• Optional static typing is available in Groovy
from 2.0 onwards...

25

Groovy and CFML

• function(n) { return n * n; } // { n -> n * n }
function(it) { return it * it; } // { it * it }

• collect / findAll - we'll cover later

• Optional / dynamic typing is familiar, yes?

26

Clojure

• Lisp on the JVM

• Based on a number of abstractions

• General purpose replacement for Java

• Immutable data by default

27

Sequence Abstraction

• first, rest, cons

• may be countable (knows own length)

• map, filter, reduce

• Groovy's collect, findAll - sort of

28

Sequence Abstraction

• (first [1 2 3 4])
(rest [1 2 3 4])
(cons 5 [6 7 8])
(map inc [1 2 3 4])
(filter even? [1 2 3 4])
(reduce + [1 2 3 4])

29

Sequence Abstraction

• (first [1 2 3 4]) ;; 1
(rest [1 2 3 4]) ;; (2 3 4) - not a vector
(cons 5 [6 7 8]) ;; (5 6 7 8) - not a vector
(map inc [1 2 3 4]) ;; (2 3 4 5)
(filter even? [1 2 3 4]) ;; (2 4)
(reduce + [1 2 3 4]) ;; 10

30

Lazy Sequences

• Can model infinite sequences

• Sequence realized on-demand

• Can wrap discrete processes to produce
continuous processes-as-sequences

31

Lazy Sequence

• (iterate inc 0) ;; (0 1 2 3 4 5 6 7 8 9 10 11...
(take 5 (iterate inc 0))
(take 5 (drop 5 (iterate (fn [n] (* 2 n)) 1)))

(take 5 (map inc (filter odd? (iterate inc 0))))

32

Lazy Sequence

• (iterate inc 0) ;; (0 1 2 3 4 5 6 7 8 9 10 11...
(take 5 (iterate inc 0)) ;; (0 1 2 3 4)
(take 5 (drop 5 (iterate (fn [n] (* 2 n)) 1)))
;; (32 64 128 256 512)
(take 5 (map inc (filter odd? (iterate inc 0))))
;; (2 4 6 8 10)

33

Clojure and CFML

• No immutable data

• can implement immutable objects

• sort of - can often circumvent :(

• No sequence abstraction

• just loops :(

34

Clojure and CFML

• Can imitate lazy sequences!

• as a function that returns a pair

• of the next value and a function for the
rest of the lazy sequence

• DEMO!

35

Scala

• Designed to be a "better Java"

• Low ceremony

• Strong, static typing

36

OOP / FP Hybrid

• Full object-oriented language

• Classes + objects + case (value) objects

• Immutable data possible

• Sophisticated collection classes

• head, tail, + (cons), size

• map, filter, reduce, etc

37

Strong Typing w/
Inference

• Mostly can omit types (like dynamic langs)

• Still type-safe operations

• Also type-safe collections

• List of integer can contain only integers

38

Scala and CFML

• Not much in common

• No strong typing, no immutable data, no
real collection classes...

• Useful to "Think in FP vs OOP"

39

Agenda

• Idioms in other languages

• Applying those in CFML

• Collection classes

• Arrays & Structs

• Closures

• Integrating other languages

40

Collection Classes

• Lists, vectors, maps (structs), queues,
stacks, sets, bags, ...

• Standard API (like Clojure)

• Standard functions to operate on them

41

Agenda

• Idioms in other languages

• Applying those in CFML

• Collection classes

• Arrays & Structs

• Closures

• Integrating other languages

42

Arrays & Structs

• Array can be treated as list or vector

• Struct is a map and can model a set

• ColdFusion 10 & Railo 4 introduced

• arrayEach, arrayFilter, etc

• structEach, structFilter, etc

• no map or reduce functions :(

43

Agenda

• Idioms in other languages

• Applying those in CFML

• Collection classes

• Arrays & Structs

• Closures

• Integrating other languages

44

Closures

• ColdFusion 10 & Railo 4 introduced these

• Makes it easier to write map, reduce, etc

• Finally allows us to treat arrays and structs
more like collection classes (in other langs)

• DEMO!

45

Agenda

• Idioms in other languages

• Applying those in CFML

• Collection classes

• Arrays & Structs

• Closures

• Integrating other languages

46

Integrating Other
Languages

• Class path & libraries

• JavaLoader helps but does not solve all
problems, same for loadPaths (CF10)

• Compiling & JAR files

47

Integrating Other
Languages

• Calling into other languages

• Data structure interop

• Some commonality in Java types

• Calling back into CFML

• createDynamicProxy (CF10) can help

48

Summary

• Learn a new language every year?

• Better CFML through other languages

• Arrays and structs are very powerful (now)

• use them as general collection types

• closures make them much more powerful

49

Q & A?

• @seancorfield

• http://corfield.org

• sean@corfield.org

50

http://corfield.org
http://corfield.org
mailto:sean@corfield.org
mailto:sean@corfield.org

