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Agenda

• Scaling MongoDB - Concepts

• Replica Sets & Sharding

• Read Preference, Write Concern, Etc

• Map/Reduce

• Aggregation
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You Might Prefer...

• Queries and Looping and Grouping

• Enterprise JavaScript Workflows

• Using PhoneGap to Build Mobile Apps

• Deep Dive - two hours, halfway thru!

• Caching in ColdFusion 10
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Me

• Functional Programming in the 80's

• Object-Oriented Programming in the 90's

• Web / Dynamic Programming in the 00's

• Mostly Clojure today

4



Me & MongoDB

• Using MongoDB in production (2 years)

• Took 10gen "MongoDB for Developers" 
course (Python + MongoDB)

• Lead maintainer for Clojure's MongoDB 
wrapper "CongoMongo"
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Scaling Concepts

• Master / slave for traditional DBs

• One master

• One or more slaves

• Usually scale "up" not "out"
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Scaling Concepts

• MongoDB replaces "master / slave" with 
"replica set" for failover & load distribution

• MongoDB adds sharded clusters to support 
very large data sets - horizontal scale out
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Replica Set Concepts

• A replica set contains any number of 
(mostly) identical nodes

• A subset of these vote to elect a primary

• All remaining nodes are then secondaries

• Writes go to the primary node and 
replicate to the secondary nodes
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Replica Set Concepts

• Reads generally go to the primary node but 
can be performed against secondaries

• Per connection or per operation

• Can also be targeted to specific nodes

• Tagged of nodes and reads
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Replica Set Concepts

• Nodes may also be

• Secondary only

• Hidden

• Arbiter

• Non-voting

• Delayed
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Sharding Concepts

• Multiple "shards"

• Servers or clusters (replica sets)

• Configuration server (or a cluster)

• Shard server proxy (mongos process)

• Lightweight, can have one per app server
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Sharding Concepts

• A collection is split across the shards

• Automatic, based on a key column

• Automatically balanced across shards

• Reads directed to appropriate shards

• May run on all shards, then aggregate
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Replica Set Setup

• Start MongoDB servers as replica nodes

• add --replSet {rsName}

• specify unique ports and --dbpath folders!
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Replica Set Setup

• Connect via mongo shell to one server

• initiate the replica set

• add the other servers to that
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Replica Sets

• Either:
conf = { _id: "rsName",
    members: [ { _id: 0,
                      host: "server-x:27017" } ] }
rs.initiate( conf )
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Replica Set Setup

• Or:
rs.initiate()

• Creates default rs.conf()

• Now add the others:
rs.add( "server-y:27017" )
rs.add( "server-z:27017" )
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Replica Set Demo

• Let's see a real replica set running locally!

• Must use local machine name

• Must use different ports for each instance
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Sharding Setup

• Start config server(s)

• mongod --configsvr --dbpath /data/cfg

• Start mongos process(es)

• mongos --configdb server-c:27019

• Start server (or replica set) for each shard

• mongod --dbpath /data/sh1
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Sharding Setup

• Add each shard to configuration

• sh.addShard("server-s:27100")

• Enable sharding for the database

• sh.enableSharding("mydb")

• Enable sharding for a collection

• sh.shardCollection("mydb.coll",{thekey:1})
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Sharding In Use

• Connect to the mongos server (or cluster)

• Interact with the database as usual

• Data automatically moved between shards

• Reads automatically routed based on key
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Sharding In Use

• If a query includes the shard key, it will be 
routed directly to the appropriate server

• If a query does not include the shard key 
(or uses a range), the query will be sent to 
multiple servers and the results merged in 
the mongos process
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Sharding Demo

• Let's see it running!
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Read Preference

• Normally all reads go to the primary

• Just like writes

• As we saw, you cannot normally read from 
a secondary unless you explicitly allow it

• Sometimes you want to spread the read 
load or read from nearby servers (in a 
geographically distributed cluster)
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Read Preference

• Available options:

• primary - default

• primaryPreferred

• secondary

• secondaryPreferred

• nearest
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Read Preference

• Secondaries can return stale data!

• Can specify preference

• Per connection

• Per collection

• Per operation

• Not currently supported by cfmongodb
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Write Concern

• By default, receipt of a write command is 
acknowledged by the server (but may not 
yet have been written to disk)

• You can control what operations you wait 
for before a write command returns
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Write Concern

• Errors Ignored - do not use!

• Unacknowledged

• Fire and forget

• Network errors are detected

• Used to be the default
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Write Concern

• Acknowledged

• Current default (as of late 2012)

• Network errors, duplicate keys etc

• Journaled

• The update is written to local journal

• Durable - will survive shutdown / crash
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Write Concern

• Replica Acknowledged

• The update is written to one or more 
secondaries in a replica set

• Can specify number or "majority"

• Specifying number will block until that 
many secondaries have the write (and 
therefore it can block "forever"!)
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Write Concern

• cfmongodb supports per-connection only

• Not per-operation

• mongoClientOptions arg to MongoConfig

• writeConcern field of that struct
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WriteConcern

• Retrieve from a Java class

• mongoFactory.getObject(
    "com.mongodb.WriteConcern"
    ).UNACKNOWLEDGED

• http://api.mongodb.org/java/2.10.1/com/
mongodb/WriteConcern.html 
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Map/Reduce

• Intended for complex data processing

• Batch operation, not real time!

• You provide map, reduce, finalize functions 
written in JavaScript (as strings!)
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Map/Reduce

• people = mongo.getDBCollection("people");
people.mapReduce(
    map = "function(){ ...}",
    reduce = "function(key,values){ ... }",
    outputTarget = ... );

• For finalize you must use a DB command

• Examples in cfmongodb aggregation folder
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Aggregation 
Framework

• Added in MongoDB 2.2

• Native, pipeline-based functions

• project (SELECT), match (WHERE), 
group (GROUP BY), sort (ORDER BY), 
unwind, skip, limit, geoNear (new in 2.4)

• Simple aggregate() function takes each 
operation as an argument in order
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Aggregation 
Framework

• result = musicians.aggregate(
  { "$group" : { "_id" : "$status", 
                    "total" : { "$sum" = 1 } } },
  { "$project" : { "status" : "$_id",
   "numberOfMusicians" : "$total",
                            "_id" : 0 } }
);
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Aggregation 
Framework

• Equivalent to

• SELECT COUNT(*) AS total, status
FROM musicians
GROUP BY status

• More examples in cfmongodb aggregation 
folder
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Summary

• MongoDB

• Supports simple, robust clustering with 
automatic failover

• Supports data sharding to provide 
automatic horizontal scalability

• Provides plenty of control over reading 
and writing in a clustered environment
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Summary

• cfmongodb supports

• Robust, scalable clustering

• Big Data manipulation through map/
reduce and the aggregation framework

• Write Concern (partially)

• It's open source - contribute!
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Resources

• http://cfmongodb.riaforge.org 

• http://mongodb.org 

• http://docs.mongodb.org 

• http://www.10gen.com 
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Q & A?

• @seancorfield

• http://corfield.org 

• sean@corfield.org 
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