
Design Patterns
and ColdFusion

S e a n A C o r f i e l d
C h i e f S y s t e m s A r c h i t e c t

B r o a d c h o i c e , I n c .

“Each pattern describes a problem which occurs over
and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without ever doing it the same way
twice.”

-- Christopher Alexander, architect

Patterns describe
problems and

solutions

Alexander is not a software architect - he is a building architect!
1. Hierarchy of Open Space - big space in front, small space behind
2. Intimacy Gradient - enter into public areas, navigate into private areas

Who am I?

VP Engineering, Broadchoice

Previously:

Mgr, Adobe Hosted Services

Sr Architect, Macromedia IT

Sr Consultant, various web co.

Architect / Developer:

ColdFusion since 2001

Java since 1997 (Groovy since 2008!)

Also manager of Bay Area ColdFusion User Group!

Common problems

Common solutions

Trade offs

What is this about?

Show of hands:
1. Who’s using ColdFusion 8? 7? 6.1? 5 or earlier?
2. Who’s using CFCs? Who thinks they’re writing OO code? Patterns?

I want to remove some of the mystery around patterns by showing you how pervasive they are - you're probably already
using some patterns without even realizing it. I hope that you will come out of this session with a better understanding
of what patterns are how they can help you in your day-to-day programming work - and that you will be inspired to
learn more about patterns and extend yourself to become a better developer.

Some simple, common patterns

Patterns and languages

Selecting and using patterns

Frameworks and patterns

Recommended reading

Our roadmap

Simple, common
pattern examples

My web site has the same stuff at the top and
bottom of each page and I don't want to
duplicate that in every page!

A common problem

Put the common stuff in separate files
(header.cfm and footer.cfm) and include them on
every page.

A common solution

This is just one possible solution - a simple one.

No duplication of header and footer code now
(+)

Still have boilerplate text (includes etc) in every
page (-)

If some pages need a different header / footer,
you either make new header / footer files for that
page or add conditional logic to the header /
footer files (-)

Trade offs

Again, there are other possible solutions, more sophisticated solutions, that have different trade offs.

<cfinclude template="header.cfm" />

<h1>Welcome to my site!</h1>

<p>Let's learn about design patterns in ColdFusion!</
p>

<cfinclude template="footer.cfm" />

Including header and
footer

Another solution might be to use content variables and a layout but we’re keeping things simple here.

“An important part of patterns is trying to build a
common vocabulary, so you can say that this class is
a Remote Facade and other designers will know
what you mean.”

-- Martin Fowler

Patterns provide a
common vocabulary

If we use different names for the same things, we cannot communicate effectively with each other

<cfinclude template="header.cfm" />

<h1>Welcome to my site!</h1>

<p>Let's learn about design patterns in ColdFusion!
</p>

<cfinclude template="footer.cfm" />

A composite view is a view that includes other
views (conceptually or literally - as with all
patterns, there are many, many ways to implement
this!)

Pattern: Composite View

From Core J2EE Patterns - specifically gives the example of JSP includes.

Patterns have four parts:

Name - the common vocabulary

Problem - “forces” that determine when the
pattern is applicable

Solution - a template for solving the problem

Consequences - “pros and cons”

What is a pattern?

It's important to remember that a pattern is all four parts together. A pattern is not just a solution. Patterns may help us
figure out one or more possible solutions to any given problem. The consequences should allow us to figure out better
solutions in specific circumstances.

I need a single instance of an object and I need it
easily accessible everywhere in my application!

A common problem

Create it at application startup and put it in
application scope so you can get at it anywhere.

A common solution

Initialization is all in one place (+)

Easy access to objects application-wide (+)

Application scope is referenced directly
everywhere which breaks encapsulation to some
degree (-)

Trade offs

We can resolve the negative and avoid having objects refer to application scope by “injecting” dependencies - passing
in the other objects they need - when those objects are created.

This is a common idiom in ColdFusion:

In Application.cfc’s onApplicationStart():

application.logger = createObject("component","LoggingService");

Global access:

application.logger.info("This is a common idiom.");

APPLICATION scope usage

Show of hands: who is using Application.cfc?

Still using Application.cfm? You have to use conditional logic and locking to perform initialization at application startup.

Name - Singleton

Problem - some classes require that only a single
instance exists and that it is accessible from a
well-known place

Solution - provide a way to create the single
instance and a global way to access that single
instance

Consequences - controlled access; ability to use
subclass; complexity of ensuring only one
instance...

...in some languages!

APPLICATION /
onApplicationStart()

is a pattern

Subclass - or *any* class that provides the same API!

Java has no global variable scope and no built-in infrastructure for initialization at startup (static members don’t have
quite the same semantics). C++ also has different static member semantics. Both languages require specific code to
provide on-demand initialization and prevent multiple instances.

 import java.util.HashMap;
 public class Singleton {
 private static HashMap map = new HashMap();
 protected Singleton() {
 // Exists only to thwart instantiation
 }
 public static synchronized Singleton getInstance(String classname) {
 Singleton singleton = (Singleton)map.get(classname);
 if(singleton != null) {
 return singleton;
 }
 try {
 singleton = (Singleton)Class.forName(classname).newInstance();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 map.put(classname, singleton);
 return singleton;
 }
 }

Java Singleton (one
possible solution)

This is a slightly biased comparison - this Java code is more than just a singleton: it is really a factory that creates a
single instance of any class you need. It uses a cache of objects (“identity map” pattern) to ensure it only creates one
instance of each object. But it does not really solve the problem of unique instances since you can create, say, a
MyClass instance independently of the Singleton. “synchronized” is required - the equivalent of <cflock> in CF.

I have several components that make up my user
security logic but I don't want to expose them to
other code, in case I want to change how I
implement it!

A common problem

Create a new component that has a nice, simple,
high-level API (set of methods) and have it call
all your security components for you.

A common solution

Application code no longer needs to know about
the internals of your security system (+)

Application code can still get at the “low-level”
components if it needs to (+/-)

Some redundancy of methods between the API
and the underlying components (-)

Trade offs

Authentication system contains

User, Credentials, Group, Permission components

AuthenticationService provides an API:

login(username,password), logout(), getUser()

AuthenticationService object stored in application scope

success = application.authService.login("jane@doe.com","xxx");

if (success)
 name = application.authService.getUser().getFirstName();

Service objects and
APPLICATION scope

Name - Facade

Problem - as a subsystem grows, it becomes more
complex with a large number of smaller objects

Solution - introduce a single component that provides a
simple API to the set of components within the
subsystem

Consequences - shields clients from the inside of the
subsystem, reducing complexity and coupling; does not
prevent access to subsystem if needed

Often only one instance of a facade is needed (singleton)

That’s another
pattern!

In this pattern we see another common pattern - a pattern of patterns: that many patterns depend on other patterns.
Whilst some patterns are small and self-contained, many patterns involve several objects and interactions and their
implementation usually poses problems that other patterns can help solve.

I need to apply standardized security logic to
every request in my application!

A common problem

Show of hands: who uses an application framework like Fusebox, Model-Glue or Mach-II? You’ll recognize this...

Make all requests go through a common piece of
code and apply that logic centrally, using URL
parameters to indicate what the request is really
for:

Before: /catalog.cfm and /product.cfm

After: /index.cfm?page=catalog and /
index.cfm?page=product

A common solution

Full control over every request (+)

All URLs look very similar (+/-)

index.cfm may get complicated (-)

Trade offs

As before, we can resolve the negative by applying additional design patterns to help simplify the code (by refactoring
and encapsulating the logic elsewhere - such as a framework).

<cfif not structKeyExists(session,"user")>

<cfinclude template="login.cfm">

<cfelse>

<cfinclude template="#page#.cfm">

</cfif>

Flying without a
framework

login.cfm displays a form where users login (and also contains the processing code for logging in, setting up the user
(object) in session scope etc).

Name - Front Controller

Problem - need to apply consistent logic across
all requests in an application (security, layout
etc)

Solution - route all requests through a single file
that decides how to process the request

Consequences - centralized control, easy to
change how requests are handled in a consistent
manner, moves logic out of individual pages into
controller (which can become complex)

Another pattern (of
course)

Pretty much all the application frameworks implement this pattern - ColdBox, Fusebox, Mach-II, Model-Glue.

Patterns and
languages

“The examples are there for inspiration and
explanation of the ideas in the patterns. They
aren't canned solutions; in all cases you'll need to
do a fair bit of work to fit them into your
application.”

-- Martin Fowler

“... the code examples ... are deliberately simplified
to help understanding, and you'll find you'll need
to do a lot [of] tweaking to handle the greater
demands you face.”

-- Martin Fowler

Patterns are not code!

If you look in the books, magazines and blog articles, you will almost always see explanations of patterns accompanied
by code. A lot of people need to see code to “get it” - show of hands: who feels they learn best by seeing example
code?

Unfortunately, with patterns, this can be misleading at best and sometimes downright dangerous. Patterns inherently
have trade offs and each specific implementation of a pattern has additional trade offs. The example code for any given
pattern may just not be a good solution for you - even if the pattern itself *is* applicable to your situation!

Design patterns are usually generic

Can be applied during the design phase

Can be applied to any implementation
language

Some patterns are language-specific

Some languages can implement certain
patterns directly

Some languages require pattern
implementations to be constructed

Patterns and
languages

Patterns are not code - they’re about design - which means they are broadly applicable but not universally applicable.
Composite View is from the Core J2EE Patterns book but is clearly applicable to ColdFusion - but certainly not all the
patterns in that book are applicable to ColdFusion.

Singleton and Facade refer to objects

Most design patterns are focused on OO design

With a procedural language, inheritance,
encapsulation and polymorphism become
“constructed patterns”

X11 (written in C) uses structs and pointers to
functions - and conventions - to implement
object-oriented techniques

An object-oriented bias?

“Although design patterns describe object-oriented designs, they are based on practical solutions that have been
implemented in mainstream object-oriented languages like Smalltalk and C++ rather than procedural languages ... or
more dynamic object-oriented languages.” -- GoF

In other words, many patterns have been identified from common solutions in languages like C++, Java, C# etc
(whether Smalltalk is “mainstream” is a matter of opinion!).

Most design patterns can be applied to
ColdFusion

ColdFusion, Java, C#, Smalltalk, C++, Groovy
and Ruby all have slightly(!) different language
features

Some language-specific patterns may not apply
to ColdFusion - or may apply in different ways

We should expect to see some ColdFusion-
specific patterns evolve - but it will take time for
them to get standard names

Patterns and
ColdFusion

The difference between a *design* level pattern and a language-specific pattern is not always obvious, especially when
patterns are illustrated by implementations in a single language (GoF is good for this since it uses Smalltalk and C++
which are very different languages - Fowler less so since it uses two similar languages: Java and C#).

ColdFusion...

...like Java?

...or like Ruby?

Which way to go?

We’re at a fork in the road. We’ve been “raised” to think of ColdFusion (MX+) as a rapid application development layer
on top of Java. Indeed, we hear “ColdFusion *is* Java”. We’ve been conditioned to think that what’s good for Java is
good for ColdFusion - we think we must write OO code and we must use design patterns and we must follow Java’s
lead.

Well, guess what? Not all Java patterns - and I mean that in the broadest sense - are applicable to ColdFusion. In my
opinion, we should look to dynamic languages like Smalltalk and Ruby for inspiration...

Famously uses Active Record design pattern for managing
persistence of objects and is core to how Rails works

Dynamic finder methods
find_by_email_and_password("jane@doe.com","xxx")

find_by_colA_and_colB_and_colC(arg1,arg2,arg3)

Dynamic methods are not possible in Java / C#

Dynamic methods are possible in...

...Ruby (obviously) - using :method_missing...

...Smalltalk - using #doesNotUnderstand...

...Groovy - using invokeMethod()...

...ColdFusion - using onMissingMethod()

Ruby / Ruby on Rails
patterns

Show of hands: Who has heard of Ruby on Rails? Who has used it?

Active Record is broadly applicable (in other languages) but Rails has made it really popular.

Name of method is parsed at runtime to determine what the arguments mean.

mailto:sean@corfield.org
mailto:sean@corfield.org

<cffunction name="onMissingMethod">

<cfargument name="missingMethodName">

<cfargument name="missingMethodArguments">

<cfif left(missingMethodName,8) is "find_by_">

<!---
parse col_and_col_and_col...
SQL query with arguments matched to columns
--->

<cfelse>
 <!--- no such method: throw exception --->
</cfif>

</cffunction>

onMissingMethod()

The full solution is too complex to show on a slide but this should give you an idea of the structure. onMissingMethod()
is invoked when a call is made to a function that is not explicitly defined in an object. You can then look at the function
name and the arguments and decide what to do. Rails uses this technique to implement a number of helper methods
but the “pattern” doesn’t have a name yet.

Often used in design pattern code examples (e.g.,
Java) or UML diagrams that illustrate concepts

Smalltalk has no interfaces (but was used to
illustrate Gang of Four patterns)

Interfaces are not needed but are useful as a
descriptive tool in explaining pattern
implementations

Patterns and
interfaces

If you read about patterns, you’ll see interfaces used extensively. You’ll see Java code examples with interfaces all over
the place. You can be forgiven for thinking that you need interfaces to implement patterns. The “classic” design
patterns book used both C++ *and* Smalltalk to illustrate patterns and neither language has interfaces (C++ has a
construct that is similar to an interface but Smalltalk has no such construct). Ruby does not have interfaces either.

ColdFusion 8 introduces <cfinterface>

You can use it to help implement patterns the
“Java way”

Or you can use “duck typing”** and conventions
to implement patterns the “Smalltalk way” (or
“Ruby way” or “Groovy way”)

** Duck typing: using weak typing
(returntype="any" and type="any") and passing in
any object that provides the necessary methods to
satisfy the “contract”

Patterns and
interfaces (continued)

<cfinterface> specifies the methods a component provides (API) but not how they behave. <cfcomponent>
implements the interface to specify the behavior. An interface can have many implementations. I was an early - and
vocal - advocate of adding interfaces. I submitted the original ER and rallied the community to vote for it. But duck
typing is more powerful and appropriate for ColdFusion - onMissingMethod() lets you implement any methods
dynamically.

Selecting and
using patterns

Patterns have consequences that help us decide
which solution is more appropriate in a particular
situation

“Using, say, an object-relational mapping tool still
means that you have to make decisions about how
to map certain situations. Reading the patterns
should give you some guidance in making the
choices.”

-- Martin Fowler

Patterns provide
guidance

This is all about choosing the “best” solution for your particular situation. Or at least the “better” solution given a
number of possible choices. There are no absolute best solutions - the choice depends on the forces (problem
specifics).

“When people begin to look at design patterns,
they often focus on the solutions the patterns offer.
This seems reasonable because they are advertised
as providing good solutions to the problems at
hand.

However, this is starting at the wrong end. When
you learn patterns by focusing on the solutions
they present, it makes it hard to determine the
situations in which a pattern applies. This only tells
us what to do but not when to use it or why to do
it.”

-- Alan Shalloway

Patterns are not
just solutions

Not like the SEARS
catalog...

You don’t just put
together a collection of
patterns and... voilà,
instant application!

Instead, think of
academic catalogs that
organize and classify
items so that you can
find things easily

Pattern catalogs

When you first start using design patterns, there is the temptation to treat these books like a grocery list of ingredients
that are necessary for a successful application. Remember that design patterns are about forces and applicability as
much as they are about templates for solutions. They can be inspiration when you’re stuck on a problem - they can
provide guidance when you’re not sure which way to solve a problem. They are not “building blocks”.

The “classic” software design patterns book has:

Creational, Structural, Behavioral

Core J2EE Design Patterns has:

Presentation Tier, Business Tier, Integration

Martin Fowler's enterprise application patterns
book has ten categories including three for
object-relational alone

Types of patterns

I'm not going to go too deep into classification of patterns but I want to give you a sense for how they are typically
organized within the books (catalogs), partly because each book handles it differently.

Creational patterns

Abstract Factory, Builder, Factory Method, Prototype,
Singleton

Structural patterns

Adapter, Bridge, Composite, Decorator, Facade,
Flyweight, Proxy

Behavioral patterns

Chain of Responsibility, Command, Interpreter, Iterator,
Mediator, Memento, Observer, State, Strategy, Template
Method, Visitor

Design Patterns
(Gang of Four)

The classic design patterns book is very generic and therefore classified patterns based on how you build stuff, how
you organize stuff and how you implement your workflows. These patterns are very broadly applicable (although a
number of them are not actually very common in ColdFusion applications - because we don't often encounter the
problems they solve).

Presentation tier

Intercepting Filter, Context Object, Front Controller, Application
Controller, View Helper, Composite View, Dispatcher View,
Service To Worker

Business tier

Business Delegate, Service Locator, Session Facade, Application
Service, Business Object, Composite Entity, Transfer Object, T O
Assembler, Value List Handler

Integration tier

Data Access Object, Service Activator, Domain Store, Web Service
Broker

Core J2EE Patterns

The Core J2EE Patterns book is organized very differently and will look much more familiar to ColdFusion developers
because we (mostly) already think in terms of the tiers mentioned in the book. However, several of these design
patterns have appeared as a response to certain problems which are Java-specific (in particular addressing the
overhead of communications in client-server architectures based on EJB).

Frameworks and
patterns

Frameworks are designed to solve common problems

Application frameworks usually implement several
patterns

Front Controller - everything goes through
index.cfm

Model-View-Controller - segregation of the
presentation and business tiers

Identity Map - a cache accessed by a unique key

Context Object - encapsulating information about
a request, e.g., event

...

Frameworks are full
of patterns

Since patterns are applicable to common problems and offer templates for solutions to those problems, it should be no
surprise that application frameworks - which all solve similar problems - are implementing a number of common
patterns (often in very different ways).

ColdSpring

Chain of Responsibility - each “aspect” calls methods on the next
“aspect” until the underlying business object is reached

Identity Map - cache of objects accessed by “id” (bean name)

Proxy - same API as your business objects but intercepts method
calls to execute before, after or around “advice”

Model-Glue 2.0 aka “Unity”

Adapter - to provide a common API to different persistence engines

Tartan

Command - encapsulates behavior in an object with an execute()
method

Some specific patterns
in frameworks

Abstract Factory

To manage objects for different databases

Active Record

Each business object knows how to save and load itself

Factory Method

Data access objects, gateways, metadata and records

Transfer Object

A lightweight object for moving data between application tiers

...and others

Patterns in Reactor

Data Mapper

Maps your business objects to & from tables in the database

Decorator

Extend the functionality of generated objects by adding your own
methods or "overriding" the generated methods

Factory Method

Business objects are created by name (and may be decorators or
"basic" generated objects)

Identity Map

Object cache, each object is referenced by its primary key

...and others

Patterns in Transfer

Recommended
reading

There are a number of good books about design
patterns

Most of them assume knowledge of OO

Most of them are “catalogs” that you can dip into
as needed

Design Patterns
“Elements of Reusable Object-Oriented

Software”
Gamma, Helm, Johnson, Vlissides

The “Gang of Four” Book containing 23
patterns

Design Pattern
Books (I)

Core J2EE Patterns
“Best Practices and Design Strategies”
Deepak Alur, John Crupi, Dan Malik

Fairly Java-specific but quite a few useful
lessons for web applications in general

Design Patterns Explained
“A New Perspective on Object Oriented

Design”
Alan Shalloway, James Trott

A good introduction to OO and the GoF
design patterns

Design Pattern
Books (II)

Patterns of Enterprise Application
Architecture

Martin Fowler

Catalog of 51 patterns with many variants
for each type of software problem

Refactoring to Patterns
Joshua Kerievsky

Practical applications of patterns to
improve code structure and

maintainability

Design Pattern
Books (III)

Any questions?

Contact me:

sean@corfield.org

http://corfield.org/

Thank you!

mailto:sean@corfield.org
mailto:sean@corfield.org
http://corfield.org
http://corfield.org

